
Vision Research 99 (2014) 124–133
Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier .com/locate /v isres
Learning to predict: Exposure to temporal sequences facilitates
prediction of future events
0042-6989/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.visres.2013.10.017

⇑ Corresponding author. Address: Department of Psychology, University of
Cambridge, Cambridge, UK.

E-mail address: zk240@cam.ac.uk (Z. Kourtzi).
Rosalind Baker a, Matthew Dexter a, Tom E. Hardwicke a,b, Aimee Goldstone a, Zoe Kourtzi a,c,⇑
a School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
b Department of Psychology, University College London, London, UK
c Department of Psychology, University of Cambridge, Cambridge, UK

a r t i c l e i n f o
Article history:
Received 31 May 2013
Received in revised form 14 October 2013
Accepted 28 October 2013
Available online 11 November 2013

Keywords:
Visual learning
Transfer
Perception
Prediction
Attention
a b s t r a c t

Previous experience is thought to facilitate our ability to extract spatial and temporal regularities from
cluttered scenes. However, little is known about how we may use this knowledge to predict future
events. Here we test whether exposure to temporal sequences facilitates the visual recognition of upcom-
ing stimuli. We presented observers with a sequence of leftwards and rightwards oriented gratings that
was interrupted by a test stimulus. Observers were asked to indicate whether the orientation of the test
stimulus matched their expectation based on the preceding sequence. Our results demonstrate that expo-
sure to temporal sequences without feedback facilitates our ability to predict an upcoming stimulus. In
particular, observers’ performance improved following exposure to structured but not random sequences.
Improved performance lasted for a prolonged period and generalized to untrained stimulus orientations
rather than sequences of different global structure, suggesting that observers acquire knowledge of the
sequence structure rather than its items. Further, this learning was compromised when observers per-
formed a dual task resulting in increased attentional load. These findings suggest that exposure to tem-
poral regularities in a scene allows us to accumulate knowledge about its global structure and predict
future events.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Successful everyday interactions entail that we extract informa-
tion about the structure of the environment and use it to recognize
the current scene as well as predict future events. There is accumu-
lating evidence that previous experience with the environment
facilitates our ability to extract information about spatial and tem-
poral regularities in cluttered scenes (Aslin & Newport, 2012;
Perruchet & Pacton, 2006). This learning by mere exposure to stim-
uli that co-occur is known as statistical learning and has been
shown to facilitate performance in a range of tasks: object recogni-
tion (Brady & Chun, 2007; Brady & Oliva, 2008), language under-
standing (Misyak, Christiansen, & Tomblin, 2010), social
judgments (Kunda & Nisbett, 1986) and inductive reasoning (Kemp
& Tenenbaum, 2009). For example, after exposure to items (e.g.
shapes, tones or syllables) that co-occur in space or appear in a
temporal sequence, observers report that structured combinations
are more familiar than random contingencies (Chun, 2000; Fiser &
Aslin, 2002a; Saffran, Aslin, & Newport, 1996; Saffran et al., 1999;
Turk-Browne, Junge, & Scholl, 2005). Infants as young as 8-months
old are able to parse meaningful linguistic units after exposure to a
stream of syllables (Fiser & Aslin, 2002b; Saffran, Aslin, & Newport,
1996). Taken together, this previous work suggests that observers
acquire implicit knowledge of the regularities present in a scene,
despite the fact that they may not be explicitly aware of its specific
structure. However, little is known about how we translate this
knowledge of spatiotemporal structures to predictions of future
events.

To address this question, here we test whether exposure to
temporal sequences facilitates our ability to predict an upcoming
stimulus. Previous studies have mainly used reaction times as an
implicit measure of anticipation of an upcoming stimulus
following implicit learning of temporal sequences (Nissen &
Bullemer, 1987; for review see Schwarb & Schumacher, 2012). In
contrast, here we ask whether learning a temporal sequence facil-
itates the explicit recognition of an upcoming stimulus. To this end,
we asked participants to make an explicit prediction about the
identity of the stimulus that they expected to appear following a
temporal sequence. In particular, we presented observers with a
sequence of leftwards and rightwards oriented gratings that was
interrupted by a test stimulus (Fig. 1). Observers had to maintain
attention throughout the temporal sequence as the temporal posi-
tion of the test stimulus was randomly chosen across trials and
were asked to indicate whether the test stimulus matched their
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Fig. 1. Stimuli and design: diagram illustrating the trial design: a sequence of eight
gratings was repeated twice and was interrupted by the presentation of a cue and
test stimulus. The sequence continued after the participants indicated their
response until all eight gratings were presented indicating the end of the trial.
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expectation or not. Our results demonstrate that the observers’
ability to predict the orientation of the test stimulus improved fol-
lowing exposure to structured but not random sequences, suggest-
ing that observers use information about temporal structure to
predict future events. We further investigate whether learning to
predict in the context of temporal sequences generalizes to new
structures and stimuli and whether it is affected by attentional
load.
2. Methods

2.1. Observers

Sixty-six healthy undergraduate students from the University of
Birmingham took part in the study: (Experiment 1: n = 16 (5 male,
11 female; mean age = 21.25 years); Experiment 2: n = 18 (6 male,
12 female; mean age = 19.9 years); Experiment 3: n = 18 (12 male,
6 female; mean age = 20.9 years); Experiment 4: n = 14 (5 male, 9
female; mean age = 21.5 years). All participants were naïve to the
aim of the study, had normal or corrected-to-normal vision, had
no history of neurological disorders and gave written informed
consent. This study was approved by the University of Birmingham
Ethics Committee.
2.2. Stimuli

Stimuli comprised two Gabor gratings presented at 11.6� visual
angle, 100% contrast, and spatial frequency of .48 cycles per degree.
The gratings were oriented clockwise or counter clockwise from
the vertical axis (±10�) with the exception of Experiment 3 (see de-
tails below). To control for local adaptation across stimuli we jit-
tered the grating orientation randomly within ±2� across trials.
Stimuli were generated in Matlab R2009a (version 7.8.0.347) using
the Psychophysics toolbox (version 3.0.8) (Brainard, 1997; Pelli,
1997). Stimuli were displayed at a distance of 450 mm on a middle
gray background in the center of a 1280 � 1024 pixel
(0.3 mm � 0.3 mm per pixel; 85 Hz refresh rate) gamma-corrected
ViewSonic P225f CRT monitor in a silent, dark, testing room.

We used these stimuli to generate four sequences, each com-
prising of 8 gratings presented at a different order across se-
quences, as shown below (1 refers to the leftwards oriented
grating at �10� and 2 refers to the rightwards oriented grating at
+10�):
Sequence A: 2 1 2 1 1 2 1 2.
Sequence B: 1 1 2 1 2 2 1 2.
Sequence C: 1 2 1 1 2 2 1 2.
Sequence D: 2 2 1 1 1 2 1 2.

Each grating orientation was presented four times in each se-
quence. Each sequence was repeated twice, resulting in 16 stimuli
per trial. As all gratings were presented at the same rate, observers
could not use duration to group elements or segment the se-
quences. Further, to ensure that observers did not perform the task
simply by memorizing the first or last stimuli in the sequence, the
orientation of the first stimulus was randomized in each trial and
the last three stimuli in each sequence were always the same.
Finally, as the frequency of occurrence was matched for the two
grating orientations in the sequence, observers were required to
learn the order of the elements in the sequence (i.e. temporal order
statistics among pairs or triplets of oriented gratings).

2.3. Design

All participants completed an initial practice (10 min) to famil-
iarize themselves with the task procedure and timing of the se-
quence. During this practice session participants were presented
with simple sequences (1 2 1 2 1 2 1 2 or 2 1 2 1 2 1 2 1: repeated
to make a 16 item sequence) and were given auditory error
feedback.

Following this practice, participants completed a minimum of 3
and a maximum of 6 training sessions (until a criterion perfor-
mance level of 80% was reached) without feedback on consecutive
days. During each session participants completed four experimen-
tal runs. Each run comprised of 40 trials. Participants were pre-
sented with either sequences A and B (20 trials per sequence) or
C and D (20 trials per sequence). The order in which the two se-
quences were presented was randomized across trials. Each run
lasted approximately 10 min and participants were required to
have a minimum 2-min break between each run. Following train-
ing, participants completed a transfer test session on untrained se-
quences (two runs). This session followed exactly the same
procedure as the training sessions, but used the alternative pair
of sequences (e.g. if participants were trained on sequences A
and B they were tested on sequences C and D). This allowed us
to assess transfer of learning from trained to untrained sequences.
To test whether learning transfer was due to general practice with
the task, participants also completed one run with random se-
quences (i.e. for each trial we generated a sequence comprising
16 gratings that were presented in random order) during this
transfer session.

For each trial, participants were asked to respond to a test stim-
ulus that appeared in each sequence. This test stimulus was one of
the sequence gratings, highlighted by a red circle. Participants
were required to report whether the test image had the same ori-
entation (left vs. right) as the grating they expected to appear in
that position in the sequence. The test stimulus appeared only in
the second repeat of the sequence and its temporal position was
randomized across trials. The test stimulus could appear in any po-
sition in the sequence except the last three positions; stimuli in
these positions were the same across trials. For each run, 50% of
the test stimuli were presented at the correct orientation for their
position in the sequence. Participants performed this task without
feedback across all training sessions and the transfer test.

2.3.1. Experiment 1
Half of the participants in Experiment 1 were trained on se-

quences A and B, and tested on sequences C and D, while the rest
of the participants were trained on sequences C and D, and tested
on sequences A and B. Participants were presented with gratings
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oriented clockwise and counter clockwise of the vertical axis (±10�,
with ±2� jitter). Each grating in the sequence was presented, at
central fixation, for 300 ms followed by a blank interval (ISI) of
300 ms. During the ISI a white fixation dot was presented in the
center of the display. A red dot cue was presented for 1000 ms be-
fore the test stimulus appeared. The test stimulus was then pre-
sented for 300 ms. Participants had a further 1700 ms to respond
to the test stimulus. A white fixation dot was displayed for
300 ms following the participants’ response, after which the se-
quence continued until all items in the sequence were displayed.
Participants responded using keys 1 and 2 on the numeric keypad
to signal correct (i.e. the test stimulus orientation matched the ex-
pected orientation in the sequence) and incorrect respectively. The
end of the trial was marked with a black ‘X’, which was displayed
for 1000 ms before the start of the next trial.

2.3.2. Experiment 2
All parameters for this experiment matched those of Experi-

ment 1. Sequences A and B were used for training while C and D
were used for the transfer test. Participants were presented with
gratings oriented clockwise and counter clockwise of the vertical
axis (±10�, with ±2� jitter). There was no test stimulus; instead
observers were presented with a red dot for 2000 ms. A white fix-
ation dot was displayed for a further 300 ms following the partic-
ipants’ response, after which the sequence continued until all
items in the sequence were displayed. Participants were instructed
to respond which grating orientation they expected to see at that
position in the sequence; 1 on the number pad for left and 2 for
right orientation. As with Experiment 1, the end of the sequence
was marked with a black ‘X’, which was displayed for 1000 ms.
After this, the next trial began.

2.3.3. Experiment 3
For this experiment, all parameters were similar to Experiment

1. Sequences A and B were used for training. However, half the par-
ticipants were presented with gratings oriented clockwise and
counter clockwise of the vertical axis (±10�, with ±2� jitter), while
the rest of the participants were presented with gratings oriented
around the horizontal axis (±10� with ±2� jitter). To test whether
learning transfers to a sequence with the same temporal structure
but comprising of different stimuli, we tested participants with the
same sequences as those used for training but comprising of grat-
ings presented at the untrained orientation. That is, participants
that had trained on the vertical gratings were then tested on the
horizontal gratings during the transfer session and vice versa.

2.3.4. Experiment 4
For this experiment, all parameters were similar to Experiment

1. Sequences A and B were used for training while C and D for the
transfer test. Participants were presented with gratings oriented
clockwise and counter clockwise of the vertical axis (±10�, with
±2� jitter). However, during this experiment participants were in-
structed to perform a contrast detection task in addition to the pre-
diction task, resulting in increased attentional load. During each
trial, up to 3 of the gratings were presented at a lower contrast
than the rest of the gratings in the sequence. Stimulus contrast
(minimum and maximum contrast levels were set at 0.4 and 1
respectively) was controlled using a 3-down-1-up staircase meth-
od resulting in 79.4% performance level. As well as responding to a
test grating in each sequence (as in Experiment 1) participants also
had to count how many contrast changes they detected during the
sequence. Once the sequence trial had ended a green cue was pre-
sented for a maximum of 2000 ms, during which the participants
had to enter a number corresponding to the number of low con-
trast stimuli they had detected during the trial (0–3). After the
participants responded, a white fixation dot was presented for
300 ms indicating the start of the next trial.
3. Results and discussion

3.1. Experiment 1

Training enhanced the observers’ performance in predicting the
correct test grating. As shown in Fig. 2A, most observers (11/16)
showed increased performance across training blocks. For a small
number (5/16) of weak learners (i.e. participants that reached per-
formance less than 70% after a minimum of 4 training sessions)
performance remained on average at 50.75% after training for four
sessions. While performance improved for trained sequences,
when observers were tested with random sequences performance
remained on average at 55.78%, suggesting that this behavioral
improvement reflects knowledge of the sequence structure rather
than general familiarity with the task. To quantify this learning ef-
fect we compared the mean of the first two training blocks with
the mean of the last two training blocks across all participants
(including weak learners). A repeated measures ANOVA with Ses-
sion (start, end of training), Group (Group1 was trained on se-
quences A, B, while Group 2 on sequences C, D) and Sequence
type (A vs. B, or C vs. D) showed a main effect of Session
(F(1,14) = 26.34, p < 0.001) but no significant effect of Group
(F(1,14) < 1, p = 0.697) or Sequence Type (F(1,14) < 1, p = 0.418).
Further, we observed a significant interaction between Group
and Session (F(1,14) = 7.71, p = 0.01), consistent with better perfor-
mance before training for observers trained on sequence A and B
than observers trained on sequences C and D.

We then tested whether learning of the trained sequences gener-
alized to untrained ones by comparing the mean of two transfer
blocks to the start (mean of two first training blocks) and end (mean
of last two training blocks) of training. Fig. 2B shows that generaliza-
tion of learning dependent on the sequences used for training and
test. A repeated measures ANOVA comparing the start and transfer
of training with Session (start, transfer of training), Group (Group1
vs. Group 2) and Sequence type (A vs. B, or C vs. D) showed a signif-
icant interaction (F(1,14) = 19.26, p < 0.01) between Session and
Group. In particular, participants trained on sequences C and D
showed better performance in the transfer test (i.e. untrained se-
quences) compared to the start of training (t(15) =�7.579,
p > 0.001), while participants trained on sequences A and B did not
show any significant difference between the transfer test and the
start of training (t(15) = �0.157, p = 0.877). Similar analysis compar-
ing the end of training (mean of last two training sessions) to the
transfer test showed a complementary pattern of results. In particu-
lar, we observed a significant interaction (F(1,14) = 5.61, p < 0.05) be-
tween Session and Group; that is, participants trained on sequences C
and D showed similar performance in the transfer test compared to
the end of training (t(15) = �0.928, p = 0.539), while participants
trained on sequences A and B showed significant differences between
the transfer test and the end of training (t(15) = 2.563, p < 0.05).

These results could be better understood when considering the
observers’ performance for the two sets of sequences used in this
experiment. In particular, sequences A and B were shown to be
easier than sequences C and D, as indicated by better performance
at the start of training for the former than the latter (F(1,14) = 7.71,
p = 0.01). This could be due to the fact that sequences A and B com-
prise 1 triplet (2 1 2) and 1 pair (1 1), while sequences C and D
comprise three triplets (1 2 1, 2 1 2, 2 2 1) and two pairs (2 2, 1
1). Our results suggest that training generalized fully when partic-
ipants were trained on a more difficult set of sequences but tested
with an easier one. In contrast, when participants were trained on
an easier set of sequences but tested with a more difficult one
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Fig. 2. Experiment 1: (A) Behavioral performance (percent correct) across training blocks. Data is shown for strong learners (black circles; n = 11) and weak learners (gray
circles; n = 5). Data is shown for 16 blocks (4 training sessions); some participants (n = 4) completed only three sessions, as their performance had already saturated above
80%; while one participant required additional sessions (n = 1 for 6 sessions). Data for strong learners are fitted (least squares non-linear fit) using the following equation:
y = k � log(x) + c; where, k = the value of the tangent of the curve at x = 1, c = value of y for x = 1. (B) Percent correct performance is shown for the start (mean of first two
training runs of the first session), end (mean of last two training runs of the last session) and transfer (mean of first two runs) blocks of the two sequences. Data is shown from
two groups of participants (Group1: training with sequences A and B; Group2: training with sequences C and D). (C) Mean reaction times across all participants for the start,
end and transfer sessions. Error bars indicate standard error of the mean.
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performance for the untrained sequences was similar to perfor-
mance at the start of training with the easy sequence. In this case
performance on the untrained sequence was better than at the
start of training for the more difficult sequence (t(7) = �2.638,
p < 0.05) suggesting potentially weaker transfer of learning to an
untrained harder sequence. It is possible that when tested with
easy sequences observers could identify item combinations (i.e.
chunks) that were common between trained and untrained se-
quences (2 1 2, 1 1) resulting in transfer of learning to untrained
sequences with a different global structure.

Analysis of reaction times (Fig. 2C) showed similar learning ef-
fects; that is observers’ responses became faster with training as
supported by significant differences between sessions (start vs.
end of training) (F(1,14) = 53.307, p < 0.001). Transfer of this learn-
ing effect to untrained sequences depended on the difficulty of the
untrained sequences. In particular, a repeated measures ANOVA on
the data from all participants showed a significant interaction be-
tween Session (end vs. transfer of training) and Group (1 vs. 2)
(F(1,14) = 6.089, p < 0.05), consistent with the analysis on perfor-
mance accuracy. Observers were shown to be faster when trained
with a difficult sequence and tested with an easier untrained
sequence.

Further, we asked whether the learning effect we observed
lasted over time. To this end, we tested six participants at a later
time (3 months on average: range of 84–108 days) after their train-
ing on both the trained (A, B sequence) and untrained (C, D trans-
fer) sequence. A repeated measures ANOVA showed a significant
effect of Sequence (mean of last two runs of trained sequence vs.
mean of two transfer blocks of untrained sequence)
(F(1,5) = 17.11, p < 0.01) but no significant effect of Session (origi-
nal vs. delayed) (F(1,5) = 1.47, p = 0.28), nor a significant interac-
tion (F(1,5) = 0.86, p < 0.781) between Session and Sequence,
suggesting that observers’ performance remained the same three
months after the initial training; that is, observers continued to
perform better for trained than untrained sequences (Fig. 3). Sim-
ilarly, analysis of reaction times (Fig. 3B) showed no significant ef-
fects of Sequence (F(1,5) = 4.45, p = 0.08) or Session (F(1,5) = 1.33,
p = 0.30), nor a significant interaction (F(1,5) = 4.68, p = 0.08) be-
tween Session and Sequence, suggesting that improvement in re-
sponse speed due to learning did not change for a prolonged
period after training.

3.2. Experiment 2

To directly test whether the observers’ decision related to the
prediction of the test stimulus, we tested performance in a new
set of participants when the test stimulus was removed and
observers were asked to explicitly predict the orientation (left vs.
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right) of the following grating in the sequence. All observers were
trained on sequence A and B and tested on C and D. The results
showed a similar pattern as in Experiment 1 (Fig. 4). Most observ-
ers (12/18) showed increased performance across training blocks,
while for a small number (6/18) of weak learners (i.e. participants
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of 48.53%) for random sequences. A repeated measures ANOVA on
the data from all participants (including weak learners) with Ses-
sion (start, end of training) and Sequence type (A vs. B, or C vs.
D) showed a main effect of Session (F(1,17) = 20.52, p < 0.01) but
no significant effect of Sequence Type (F(1,17) = 0.39, p = 0.539)
nor a significant interaction between Session and Sequence Type
(F(1,17) = 0.21, p = 0.649).

We then tested whether learning of the trained sequences gen-
eralized to untrained ones. Comparing the mean of two transfer
blocks to the start of training (mean of two first training blocks)
showed no significant differences in performance (F(1,17) = 1.05,
p = 0.319). In contrast, comparing the mean of two transfer blocks
to the end of training (mean of two last training blocks) showed
significant differences in performance (F(1,17) = 49.17, p < 0.001).
Taken together these results suggest lack of significant generaliza-
tion of learning to untrained sequences. Note that this result is
consistent with Experiment 1, as observers were trained on the
easier set of sequences and tested for transfer of learning on the
harder set.

Analysis of reaction times (Fig. 4C) showed similar learning
effects; that is, observers became faster with training. However
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effects for both groups. Most observers (14/20) showed increased
performance across training blocks, while for a small number (6/
20) of weak learners (i.e. participants that reached performance
less than 70% after a minimum of 4 training sessions) performance
remained on average at 55.6% after training for four sessions. In
particular observers’ performance improved with training and gen-
eralized fully when observers were tested with the trained stimuli
but comprising of different stimuli than the trained ones. A re-
peated measures ANOVA on the data from all participants (includ-
ing weak learners) with Session (start, end of training), Group (half
of the participants were trained with gratings relative to vertical,
while the rest with gratings relative to horizontal) and Sequence
type (A vs. B, or C vs. D) on the data from all participants showed
a significant effect of Session (F(1,18) = 62.99, p < 0.01) but no sig-
nificant effect of Group (F(1,18) = 0.24, p = 0.629) nor a significant
interaction between Session and Group (F(1,18) < 1, p = 0.733).

We then tested whether learning of the trained sequences gen-
eralized to different stimuli. Comparing the mean of two transfer
blocks to the start of training (mean of two first training blocks)
showed a significant effect of Session (F(1,18) = 149.82, p < 0.001)
and no significant interaction between Session and Group
(F(1,18) < 1, p = 0.774). In contrast, comparing the mean of two
transfer blocks to the end of training (mean of two last training
blocks) showed no significant effect of Session (F(1,18) = 3.44,
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(gray circles; n = 8). Data is shown for 16 blocks (4 training sessions); one participant com
other participants required additional sessions (n = 9 for 5 sessions; n = 1 for 6 sessions).
(mean of first two training runs of the first session), end (mean of last two training runs
times across all participants for the start, end and transfer sessions. Error bars indicate
p = 0.08) and no significant interaction between Session and Group
(F(1,18) < 1, p = 0.737). Further, performance for random se-
quences was on average close to chance level (55.53%). Taken to-
gether these results suggest that the observers learned the
sequence structure independent of the type of stimuli presented,
as learning generalized when observers were tested with the same
sequence but untrained stimuli.

Analysis of reaction times (Fig. 5C) showed similar learning ef-
fects; that is observers’ responses became faster with training
(F(1,18) = 15.32, p < 0.001). This learning effect generalized to
new orientations used in the transfer test. That is, there was a sig-
nificant difference in reactions times between the start and trans-
fer of training (F(1,18) = 11.85, p < 0.01), but no significant
difference was observed between the end and transfer of training
to an untrained sequence (F(1,18) < 1, p = 0.875).

3.4. Experiment 4

To test whether attention affected the learning of sequence
structure we asked observers to perform a dual task that increased
attentional load. That is observers were asked to detect stimulus
contrast changes as well as performing the prediction task. Fig. 6
shows that only some observers (6/14) showed increased
performance across training blocks, while for several (8/14) weak
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learners (i.e. participants that reached performance less than 70%
after a minimum of 4 training sessions) performance remained
on average at 57.5% after training for four sessions. A repeated
measures ANOVA with Session (start, end of training) and Se-
quence type (A vs. B, or C vs. D) on the data from all participants
showed a main effect of Session (F(1,13) = 40.58, p < 0.001) but
no significant effect of Sequence Type (F(1,13) < 1, p = 0.523) nor
a significant interaction between Session and Sequence Type
(F(1,13) < 1, p = 0.546).

We then tested whether learning of the trained sequences gen-
eralized to untrained ones. Comparing the mean of two transfer
blocks to the start of training (mean of two first training blocks)
showed no significant differences in performance (F(1,13) = 1.20,
p = 0.292). In contrast, comparing the mean of two transfer blocks
to the end of training (mean of two last training blocks) showed
significant differences in performance (F(1,13) = 21.24, p < 0.001).
Taken together these results suggest lack of significant generaliza-
tion of learning to untrained sequences. This result is consistent
with Experiment 1, as observers were trained on the easier set of
sequences and tested for transfer of learning on the harder set.

Analysis of reaction times (Fig. 6C) showed similar learning
effects; that is, observers became faster with training
(F(1,13) = 10.11, p = 0.007). There was also a significant difference
in reactions times between the start and transfer of training
(F(1,13) = 5.95, p < 0.05), but only a non-significant trend for
slower reaction times was observed for the untrained sequences
in the transfer test compared to the end of training
(F(1,13) = 2.36, p = 0.148). This trend became significant when
the data from strong learners are considered separately from weak
learners (F(1,5) = 39.5; p = 0.001), suggesting a lack of significant
learning transfer in accordance with the accuracy data.

Comparing the results of this experiment to Experiment 1
shows that when a dual task increased the attentional load fewer
participants learnt the trained temporal sequence without feed-
back. However, we did not observe any significant differences in
the magnitude of the learning effect between experiments, as
shown by a non-significant main effect of Experiment (Experiment
1 vs. 4: accuracy: F(1,28) < 1, p = 0.514; reaction times F(1,28) < 1,
p = 0.897) and a non-significant interaction between Experiment
and Session (start vs. end of training) (accuracy: F(1,28) < 1,
p = 0.886; reaction times F(1,28) < 1, p = 0.491). Only when we
compared the performance of the strong learners in the two exper-
iments, we observed significantly faster reaction times in Experi-
ment 1 (F(1,9) = 16.28, p < 0.01), suggesting that increased
attentional load compromised performance in the prediction task.
4. General discussion

Learning temporal sequences is critical for developing a range of
skills from language and fine motor abilities (e.g. playing a musical
instrument) to navigating in a new environment. Our findings
demonstrate that exposure to temporal sequences without feed-
back facilitates our ability to predict upcoming events. Interest-
ingly, this improved performance lasted for a prolonged period
(up to 3 months), suggesting that training resulted in knowledge
of the sequence rather than simple familiarization with the task.

Successful performance in the prediction task required that the
participants learned temporal order statistics across the items pre-
sented in the sequences, as the frequency of occurrence was
matched for the two grating orientations. Our experimental design
makes it unlikely that the participants memorized specific item
positions or the two full sequences, as all stimuli were presented
at the same rate and in a continuous stream, the two sequences
were randomly presented across trials, the first item in the se-
quence was always randomized, the last three items were the same
across sequences, the position of the test stimulus was randomized
across trials and for half of the trials the incorrect test stimulus was
presented.

Previous studies have suggested that learning of regularities may
occur implicitly in a range of tasks: visuomotor sequence learning
(Nissen & Bullemer, 1987), artificial grammar learning (Reber,
1967), probabilistic category learning (Knowlton, Squire, & Gluck,
1994), and contextual cue learning (Chun & Jiang, 1998). In most sta-
tistical learning studies participants are merely exposed to se-
quences of stimuli without being informed about the presence of
statistical regularities and therefore learning is considered to occur
in an incidental manner. Typically, implicit learning is inferred by
poor performance in explicit recognition tasks (e.g. free recall of
items present in a sequence or recognition of sequence chunks)
(Curran, 1997; Kim et al., 2009; Willingham & Goedert-Eschmann,
1999). However, recent work suggests that the contribution of expli-
cit knowledge to statistical learning may be underestimated due to
the low sensitivity of the tests used to measure it (Hannula, Simons,
& Cohen, 2005; Shanks & Johnstone, 1998, 1999; Shanks & Stjohn,
1994). Confidence judgments have been suggested to provide a more
sensitive measure of explicit knowledge; that is, high confidence rat-
ings reflect that the participants are aware of the knowledge used to
make their judgment (Bertels, Franco, & Destrebecqz, 2012; Tunney
& Shanks, 2003). In our study, we asked participants to make an ex-
plicit judgement about the identity of the upcoming test stimulus
(leftward vs. rightward oriented grating) making them aware of
the dependencies between the stimuli presented in the sequence.
Debriefing the participants showed that participants had at least par-
tially explicit knowledge of the sequences. That is, participants freely
recalled sequence chunks, suggesting that they learned temporal or-
der statistics among pairs or triplets of oriented gratings rather than
memorizing the whole sequence. Further at the end of each session
participants were asked to rate (using a scale from 1 = very unsure,
to 5 = very confident) how confident they were about their re-
sponses. For the strong learners, 72% were confident (ratings of 4
or 5) that they responded correctly to the stimulus, but only 19.4%
correctly guessed that they were presented with two sequences. In
contrast, for the weak learners, only 36.8% were confident (ratings
of 4 or 5) that they responded correctly to the stimulus, and only
10.5% guessed correctly that they were presented with two se-
quences. However, our results suggest also some potential contribu-
tion of implicit knowledge, as suggested by strong learners with
lower confidence ratings.

These findings advance our understanding of the mechanisms
that mediate visual learning in three main respects. First, our study
is the first to test the role of sequence learning on explicit predic-
tive judgments related to visual recognition. Previous work on
learning temporal sequences has focused on implicit measures of
sequence learning, such as familiarity judgments or reaction times.
For example, the Serial Reaction Time Task (Nissen & Bullemer,
1987; for review see (Schwarb & Schumacher, 2012) involves par-
ticipants learning visuomotor associations between spatial loca-
tions on a computer screen and response keys; locations on the
screen are activated following a pre-determined sequence and par-
ticipants are asked to press the corresponding keys. Training re-
sults in faster reaction times for trained than random sequences.
Although such paradigms implicate that implicit learning of tem-
poral sequences (i.e. participants are typically unable to explicitly
recall the sequence or perform successfully explicit knowledge
tasks) facilitates the anticipation of upcoming events, they do not
test whether this knowledge can be used to predict the identity
of upcoming stimuli. In contrast, we developed a new paradigm
that allows us to directly test whether exposure to temporal se-
quences facilitates the observers’ ability to explicitly predict the
identity (e.g. orientation) of the next stimulus in a sequence. Using
this explicit test, we demonstrate that predictions related to the
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explicit recognition of objects are facilitated by previous knowl-
edge of temporal context. Reaction time measures may reflect
not only anticipation but also familiarity with the task. Our analy-
sis of reaction times is consistent with the explicit recognition test.
In particular, participants (Experiment 1) were significantly slower
on untrained than trained sequences (t(15) = 2.56, p = 0.022), sug-
gesting that the behavioral improvement we observed in the pre-
diction task was not simply due to familiarity with the task (i.e.
observers should be generally faster after training) but was specific
to the trained sequence.

Second, we explored the limits of generalization afforded by
statistical learning of temporal sequences. We show that perfor-
mance improvement in the prediction task generalized to un-
trained stimulus orientations, suggesting that observers acquire
knowledge of the sequence structure that is not stimulus-specific.
This is consistent with artificial grammar learning studies showing
positive transfer from the training stimuli to a novel set of letter
strings that employ the same grammatical structure (Shanks,
Johnstone, & Staggs, 1997). However, generalization to untrained
sequences was limited; transfer was observed only when the
untrained sequences were easier than the trained ones. When
tested with easy sequences observers may identify chunks that
are common between trained and untrained sequences resulting
in transfer of learning to untrained sequences with a different
global structure (Aslin & Newport, 2012; Koch & Hoffmann,
2000; Perruchet & Pacton, 2006).

Third, we show that attentional load compromises predictive
learning in the context of temporal sequences. In particular, fewer
observers were able to improve their performance in the prediction
task when we employed a dual task, suggesting that attention to
the temporal sequence enhances the observers’ ability to accumu-
late information during exposure to the sequence and predict an
upcoming stimulus. Previous studies testing the role of attention
in statistical learning report contradictory findings. Some studies
report statistical learning during passive viewing (Fiser & Aslin,
2001; Saffran, Aslin, & Newport, 1996) or when observers perform
an unrelated task (Cohen, Ivry, & Keele, 1990; Frensch, Lin, & Buch-
ner, 1998; Saffran et al., 1997; Stadler, 1995) while others provide
evidence that implicit learning (e.g. in Serial Reaction Time Tasks)
is degraded under dual task conditions. (Remillard, 2003; Shanks,
Rowland, & Ranger, 2005). Further, selective attention between
competing stimuli is shown to enhance learning of statistics re-
lated to the attended stimulus features (Baker, Olson, & Behrmann,
2004; Jiang & Chun, 2001; Jiang & Leung, 2005; Jimenez & Mendez,
1999; Turk-Browne, Junge, & Scholl, 2005). Here, in accordance
with previous work showing attentional modulation of sequence
learning, we demonstrate that predictive learning in the context
of temporal sequences is compromised but still possible (at least
for some observers) when attentional load is increased by adding
an orthogonal contrast task. It is possible that the effect of the dual
task would be more dramatic if the orthogonal task involved the
task-relevant stimulus feature (i.e. grating orientation).

In sum, our findings suggest that exposure to temporal regular-
ities in a scene allows us to accumulate information about its struc-
ture and predict future events. In our study we used deterministic
sequences but ensured that observers learned the global sequence
structure rather than its items by matching the frequency of occur-
rence of each item in the sequence. Future work is necessary to
investigate whether exposure to probabilistic temporal sequences
of variable complexity, as is typically the case in natural environ-
ments, also facilitates our ability to predict future events.
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